If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6h+h^2=55
We move all terms to the left:
6h+h^2-(55)=0
a = 1; b = 6; c = -55;
Δ = b2-4ac
Δ = 62-4·1·(-55)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-16}{2*1}=\frac{-22}{2} =-11 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+16}{2*1}=\frac{10}{2} =5 $
| 105=x²+2x² | | 2(4x+2)=7x-5 | | 30x+x=5+x+3 | | Y=6;y=24 | | x^2+2x=-26 | | 2x+8=314 | | 1/4-1/2r=-3/4 | | 4.2x-6.2=5.0 | | 7(2a-1)+5(2-3a)=2a | | 17(3-x)=3-13x | | 4x-5+x+55=180 | | 2x+6/2=18 | | 2x+(3*8)=12 | | 4(1+2x)=5(x-4) | | c/16=18 | | 5x+16=294 | | 5+k=3·3 | | 7x-33=-15-10x | | 2x+3=299 | | x-+26=4x-1 | | .67=26/x | | -16=2+y/3 | | -7+3v=2 | | 5x-13=4x+10 | | w(w+16)=260 | | 35+h•9/2=305 | | 5s=7s+1—2s | | 8+11=2a | | 4(x-4)+7=-13 | | 2(x÷1)=8 | | 9x+7=0x+8 | | 6(x-5)=3(x+2) |